KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Прочая научная литература » Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть

Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Себастьян Сеунг, "Коннектом. Как мозг делает нас тем, что мы есть" бесплатно, без регистрации.
Перейти на страницу:

Можно измерять не только силу синапса, но и изменения этой силы. Чтобы создать эффект хеббовской пластичности, мы стимулируем образование импульса у пары нейронов. Как выяснилось, повторная стимуляция (последовательная или одновременная) усиливает синапсы – в полном согласии с двумя вариантами правила Хебба, изложенными ранее.

После того как произошло такое наведенное изменение синаптической силы, оно может держаться до конца эксперимента – самое большее несколько часов, ибо не так-то просто сохранять нейроны живыми после того, как в них вонзили электроды. Впрочем, более грубые и примитивные опыты, которые еще в начале 1970-х делались на целых группах нейронов и синапсов, указывают на то, что изменения синаптической силы могут держаться несколько недель или даже дольше. Вопрос устойчивости является для нас ключевым, если хеббовская пластичность действительно служит механизмом накопления и хранения памяти: ведь некоторые воспоминания не покидают нас всю жизнь.

Такие эксперименты, проводившиеся в 1970-е годы, дали нам первые реальные свидетельства роста силы синапсов. К тому времени уже успела появиться и теория хранения воспоминаний, основанная на идеях Хебба. Согласно наиболее простому варианту этой теории, формирование нейронной сети начинается с возникновения между нейронами каждой пары, составляющей сеть, слабых синапсов в обоих направлениях. В дальнейшем это предположение окажется шатким, но мы его пока примем, чтобы легче представить саму теорию.

Вернемся к эпизоду вашего первого поцелуя – реальному событию, которое оставило след в вашей памяти. «Нейрон магнолии», «нейрон кирпичного дома», «нейрон возлюбленного», «нейрон самолета» и т. п. – все они активировались благодаря раздражителям вокруг вас, и произошло это, вероятно, быстро и мощно. Если применить к этому случаю «одновременную» версию правила Хебба, можно заключить, что всё это импульсообразование послужило усилению синапсов между упомянутыми нейронами.

Эти усилившиеся синапсы все вместе образуют клеточный ансамбль – если мы слегка пересмотрим понятие такого ансамбля и примем, что он представляет собой набор возбуждающих нейронов, связанных друг с другом через сильные синапсы. В нашем исходном определении такого допущения не было. Теперь же оно нам понадобилось, поскольку наша сеть содержит множество слабых синапсов, которые к данному клеточному ансамблю не принадлежат. Эти синапсы существовали и до вашего первого поцелуя – и после него они не переменились.

Слабые синапсы не оказывают влияния на процесс припоминания. Активность распространяется от нейрона к нейрону в пределах клеточного ансамбля, но не выходит за его границы, поскольку синапсы, наведенные от ансамбля к другим нейронам, чересчур слабы для активации этих внешних нейронов. Поэтому наше новое определение клеточного ансамбля работает точно так же, как работало старое.

Аналогичная теория приложима и к синаптической цепочке. Допустим, последовательность стимулов активирует некую последовательность идей. Каждая идея представлена характерным рисунком образования импульсов группой нейронов. Если группы, соответствующие этой последовательности, неоднократно дают импульсы, то, согласно «последовательной» версии правила Хебба, будут усиливаться все существующие синапсы, осуществляющие связь в направлении от нейронов в данной группе к нейронам в соседней. Это и есть синаптическая цепочка, если мы опять-таки пересмотрим ее определение, включив в него лишь узор из сильных связей.

Если эти связи достаточно сильны, образование импульсов будет распространяться по цепочке, не нуждаясь в какой-то последовательности внешних раздражителей. Любой стимул, активирующий первую группу нейронов, спровоцирует воспоминание о целой последовательности идей, как описано в главе 4. А каждое воспоминание в этой последовательности будет еще больше усиливать связи в цепочке – согласно хеббовской теории пластичности. Так вода в реке постепенно углубляет русло, и тем самым воде становится всё легче течь.

Уметь запоминать очень важно, однако столь же необходимо уметь забывать. Когда-то ваши нейроны, отвечающие за Дженнифр Энистон и Брэда Питта, были связаны в клеточный ансамбль с помощью сильных синапсов. Но настал день, когда вы впервые увидели Брэда с Анджелиной. (Знаю-знаю, это был грустный день. Надеюсь лишь, что вы все-таки не впали в отчание.) Благодаря хеббовской пластичности окрепли связи между вашими нейронами, отвечающими за Брэда и Анджелину, и эти нейроны образовали новый клеточный ансамбль. Что же стало со связями между нейронами Брэда и Дженни?

Можно придумать аналог хеббовского правила, который будет годиться и для процесса забывания. Возможно, связи между двумя нейронами ослабляются, если один неоднократно оказывается активным, когда другой неактивен. Это будет ослаблять синапсы между образами Брэда и Дженни всякий раз, когда вы будете видеть Брэда без нее.

Но можно представить себе и альтернативную версию: такое ослабление вызвано прямой конкуренцией между синапсами. Возможно, синапсы между Брэдом и Анджелиной напрямую соперничают с синапсами между Брэдом и Дженни за некое «питательное вещество», которое необходимо синапсам для выживания. Если какие-то синапсы усиливаются, они потребляют больше этого вещества, оставляя меньше пищи другим, которые в результате ослабевают. Пока не очень ясно, существуют ли такие вещества для синапсов, но аналогичные «питательные факторы», как уже выяснено, работают для нейронов. Один из примеров – фактор роста нервной ткани. За его открытие Рита Леви-Монтальчини и Стэнли Коэн получили в 1986 году Нобелевскую премию.

* * *

Древние римляне использовали термин «tabula rasa» для обозначения восковых дощечек, описанных Платоном. Обычно этот термин переводят выражением «чистая доска», поскольку в XVIII–XIX вв. на смену восковым табличкам пришли небольшие доски, на которых писали мелом. В «Опыте о человеческом разумении» философ Джон Локк, много внимания уделявший проблемам ассоциативности, выбрал иное сравнение:

Предположим, что ум есть, так сказать, белая бумага без всяких знаков и идей. Но каким же образом он получает их? Откуда он приобретает тот их обширный запас, который деятельное и беспредельное человеческое воображение нарисовало с почти бесконечным разнообразием? Откуда получает он весь материал рассуждения и знания? На это я отвечаю одним словом: из опыта[10].

Чистый лист бумаги содержит нулевую информацию, но потенциал его бесконечен. Локк уподоблял ум новорожденного младенца белой бумаге, которая готова к тому, чтобы ее заполнили буквы опыта. В рамках нашей теории накопления и сохранения воспоминаний мы предположили, что все нейроны изначально связаны друг с другом: точнее, каждый нейрон связан со всеми остальными. Синапсы при этом слабы, они готовы к тому, чтобы на них «написало свои знаки» хеббовское усиление. Поскольку все возможные связи уже существуют, может возникнуть любой ансамбль клеток. Такая сеть имеет неограниченный потенциал – как чистый лист у Локка.

К несчастью для этой теории, предположение о связи «всех со всеми» явно ошибочно. На самом деле мозгу свойственна иная крайность – скудные взаимные связи. В действительности осуществляется лишь крошечная доля возможных связей. По оценкам специалистов, типичный нейрон имеет десяти тысяч синапсов, а ведь нейронов в мозгу, видимо, около ста миллионов. Причина такого неравенства цифр весьма основательна: синапсы занимают место, как и соединяющиеся нейриты. Если бы каждый нейрон соединялся с каждым, ваш мозг разбух бы до феноменальных размеров.

Так что мозг вынужден обходиться ограниченным количеством связей. Это может вызвать серьезные проблемы при освоении новых ассоциаций. А если бы ваши нейроны, отвечающие за образы Брэда и Анджелины, вообще не были связаны? Когда вы начали бы видеть этих двух звезд вместе, хеббовской пластичности не удалось бы соединить эти нейроны в клеточный ансамбль. А возможности освоить новую ассоциацию попросту нет, если предварительно не налажены нужные связи.

Если вы много думаете про Брэда и Анджелину, весьма вероятно, что и тот, и другая представлены у вас в мозгу множеством нейронов, а не одним. (В главе 4 я писал, что такая модель, предполагающая, что в распознавании образа участвует не один нейрон, а небольшая их доля, более правдоподобна, чем модель «один образ – один нейрон».) Когда под рукой столько подходящих нейронов, вполне вероятно, что некоторая часть ваших «нейронов Брэда» окажется связанной с некоторым количеством ваших же «нейронов Анджелины». Это может оказаться достаточным для создания клеточного ансамбля, нейронная активность в котором способна при рекомбинации связей распространяться от нейронов Брэда к нейронам Анджелины или в обратную сторону. Иными словами, если каждая идея обильно (и даже избыточно) представлена множеством нейронов, процесс хеббовского обучения (освоения новых знаний, идей и т. п.) способен идти вопреки незначительной связанности нейронов.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*